Mechanisms governing neuronal degeneration and axonal regeneration in the mature retinofugal system.

نویسندگان

  • S Thanos
  • H J Thiel
چکیده

The ability of mammalian CNS neurons to regrow their lesioned axons declines during late embryonic and postnatal development. Consequently, adult retinal ganglion cells of mammals respond to injuries with rapid anterograde and protracted retrograde (Wallerian) degeneration. To monitor the cascade of events initiated by neuronal injuries, and to explore whether the regressive events of this cascade can be blocked or reversed, axotomy-induced ganglion cell responses were investigated in adult rats. The aim of the experiments was to block degradation of axotomized ganglion cells with enzymes which inhibit proteolytic activities within the retina (protease inhibitors). To achieve this goal, a new fluorescence technique was employed to assess both the chronotopological pattern of degradation and the efficacy of the protease inhibitors and anti-inflammatory treatment in preventing cell death. Injection of protease inhibitors alone or combined with dexamethasone into the vitreous body of animals whose optic nerves were transected, protected ganglion cells from degradation and prevented endocytosis-dependent tracing of microglia. Two major functions of rescued ganglion cells proved their viability: (1) the numbers of ganglion cell axons extended from retinal stripes that were explanted 1 week after axotomy and cultured in vitro, were significantly higher when the retinal pieces originated from retinae pretreated with protease inhibitors and dexamethasone at the time of optic nerve transection than from untreated retinae; (2) the numbers of ganglion cells which regenerated axons into transplanted peripheral nerve pieces were more than doubled when the eyes were injected with protease inhibitors and dexamethasone during axotomy. The results show that blocking of the retinal proteases, which are presumably localized in microglial cells, and simultaneous treatment of the intraretinal inflammation, are key steps in understanding the intraretinal responses to axotomy and for beneficially manipulating the numbers of surviving neurons. In addition to the supporting influence of neurotrophic factors and to nonpermissive features of oligodendroglia, the microglia co-regulate whether neurons can regenerate their axons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P152: Neurotoxicants and Mechanisms Neurodegenerative in Acrylamide

Many chemicals with broad industrial, pharmaceutical and agricultural application produce a neurotoxic syndrome in humans and experimental animals involving weight loss, skeletal muscle weakness and ataxia. Neurotoxicity is defined as a structural change or a functional alteration of the nervous system resulting from exposure to a chemical, biological or physical agent. Neurotoxicity including ...

متن کامل

Mechanisms of spinal cord injury regeneration in zebrafish: a systematic review

Objective(s):To determine the molecular and cellular mechanisms of spinal cord regeneration in zebrafish. Materials and Methods: Medical databases of PubMed and Scopus were searched with following key words: Zebrafish; spinal cord injuries; regeneration; recovery of function. The map of mechanisms was performed using Xmind software. Results: Wnt/ß-catenin signaling, L1.1, L1.2, Major vault prot...

متن کامل

Relationship between Mitochondrial Dysfunction and Multiple Sclerosis: A Review Study

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system that inflammation, demyelination, oligodendrocyte loss, gliosis, axonal injury and neurodegeneration are the main histopathological hallmarks of the disease. Although MS was classically thought as a demyelinating disease, but axonal injury occurs commonly in acute inflammatory lesions. In MS mi...

متن کامل

Epigenetic regulation of axonal regenerative capacity.

The intrinsic growth capacity of neurons in the CNS declines during neuronal maturation, while neurons in the adult PNS are capable of regeneration. Injured mature PNS neurons require activation of an array of regeneration-associated genes to regain axonal growth competence. Accumulating evidence indicates a pivotal role of epigenetic mechanisms in transcriptional reprogramming and regulation o...

متن کامل

Role of nuclear factor kappa B in central nervous system regeneration

Activation of nuclear factor kappa B (NF-κB) is a hallmark of various central nervous system (CNS) pathologies. Neuron-specific inhibition of its transcriptional activator subunit RelA, also referred to as p65, promotes neuronal survival under a range of conditions, i.e., for ischemic or excitotoxic insults. In macro- and microglial cells, post-lesional activation of NF-κB triggers a growth-per...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science. Supplement

دوره 15  شماره 

صفحات  -

تاریخ انتشار 1991